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Abstract

The aim of this article is to apply some results of L. Schwartz's theory

of radonifying maps to prove existence theorems for infinite dimensional valued

random variables. As a consequence, we deduce some known results in this di-

rection due to K. Ito, M. Perez-Abreu C., and T. Bojdecki and L.G. Gorostiza.
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1. Preliminaries

Before we state and prove our main result, we need the folLowing definitions

and propositions from L. Schwartz [3], in the Chapter XIII, pp. 4 and 5.

Definition 1. Let (Q,F,P) be a probability space.. Let E be a locally convex

Hausforff topological vector space and let E' be its dual. Let f be a linear

random function frcm E' to L0 (Q,F,P). f is said to be decomposed if a a mea-

surable mapping from Q to E such that for all E',

= f( )

Definition 2. Let E and G be two Banach spaces. Let u be a continuous linear

mapping of E in G. The map t :G' - E' is said to be p-decomposing (0<p5- ) if
u

for every linear random function f :E'- LP(QFP), the composite fo t from G'U

to LP(2,F,P) is decomposed by a mapping 4 from 0 to G, cE LP(Q,F,P;G) (with

ess sup I <o in the case when p=oo).

Proposition (XIII, 3;2). Let E,G be Banach spaces. Let u be a continuous

linear mapping of E in G. Then u is p-radonifying (p> 0) if and only if

t :G' -E' is p-decomposing.u

We also need the fact that if T is a Hilbert-Schmidt operator from one

Hilbert space to another, then it is p-radonifying for all p> 0. This is

proved in Chapter XII, p. 2 in [3].

2. Existence theorem

We first prove a simple proposition.

Proposition 1. Let H and H be two Hilbert spaces and let T be a Hilbert-1 2

Schmidt operator from HI to H Then, T is p-decomposing for any p> O. Further,
1 2

* ~if f is a continuous linear random function from H 2 to L2(.Q,F,P), te h

2

composite faT is decomposed by a mapping X:Q- H such that X(L ( (QPH)

with

........................................- ...................
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-.,-" IllX~w) lldP (w) < :5 21Tl

where 11Th12 is the Hilbert-Schmidt norm of T.

tProof. Since T is Hilbert-Schmidt, its transpose T from H2 to H is also

Hilbert-Schmidt. Hence, it is p-radonifying for any p> O. Hence, by the

tt
proposition (XIII, 3;2) mentioned above, its transpose (tT) which is T is

p-decomposing for any p>0. In particular it is 2-decomposing.

Let f be a continuous linear random function from H2 to L2 (, P). Then

fo T is decomposed by a mapping X: Q-H such that fl1x(w) 112dP(w) <

Let ( i) be an orthonormal basis for HI . Then, for all WE P,
i iEI I

I 2x(w)1i2= I i<X(w),oi> 2 = sup 2 .X(w),ci>12

iEI J iEl
J finite

JcI

2As the family (Zi I<X(),Oi >1 )J Jc I, J finite, of functions on fQ, is

directed increasing, by Lebesgue's monotone convergence theorem, we have

--IX(w)1 2dP(w) sup f 1I<X(w),i>l2 dP(w)
J iEJ

J finite
Jc I

sup Y fI<X(w), i>12dP(w)
J i J

J finite
JC:I

= f l<X(w),qi> 2dP(w).
iEI

As f o T is decomposed by X,

|.% "
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" .> = f(T(i)) for all ic I.

Hence, for all ic I,

f l<X(w) ' i> I2d p (w ) = f If(T().)(w)l2 dP(w) < IlfII IIT()i 2

Hence,

X:- f <X(w),@i>12 dp(w) -<  Ifl11 2  1 11 T( i)1 2 <  11 f 112 11 2 .  QED
miE .i"." ic ic l 2*

Theorem 1. Let E be a nuclear space. Let E' be its dual. Let 4 be a continu-

ous positive-definite bilinear form on E. Then, there exists a probability

space (Q,F,P) and a random variable X:E2-E' such that for all xc E, the real-

valued random variable X defined as X = x o X is Gaussian with mean zero and
x x

the covariance kernel of the process (XxxEE is 4.

Proof. Since 4P is a positive-definite kernel on E, R a real-valued Gaussian

process (Xx xEE on a probability space (Q,F,P) with mean zero and with covari-

ance kernel .

Since 4 is bilinear, it is easy to see that the mapping f from E to

L (QFP) taking x to X is linear. Further, f is continuous, as 4 is continu-
x

ous. Hence, E being nuclear, 3 neighborhoods U,V of (0), U,V both convex,

A A
balanced and closed, Vc U, E and E both Hilbert spaces such that the canoni-

V U

cal map UV from V to EU is Hilbert-Schmidt and such that f admits a factor-

*:. ization ' o o,
UV

V A UV A L2-- jE > Ev
-U --.- (., ,P)
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where ' is a continuous linear and is the canonical mapping.

As is Hilbert-Schmidt, by Proposition 1, it is 2-decomposing. Hence,

A 2 A
p U is•decomposed by a mapping Y from 2 to E' such that YE L (Q,F,P:Ev)

i '\ ith IY <  I l I4U,V 112

iLet X be the mapping from to E' defined as X= t 0 Y. Then, as Y decom-

poses o 0UV' X decomposes 4)o 0 UV OV which is f. Therefore, for all xE E,

we have xo X= f(x)=X as elements of L0 (Q,F,P). QED
x

A
Remark. As the image of E in E under the map V is dense, the transpose map

tA A
t V fro A' can be thought of as a subspace

from EV' to E' is an injection. Hence, Ev

of E' algebraically. Hence, the E'-valued random variable X of the above theo-
A

rem is actually E -valued.

3. Application to known results

We now deduce theorem 3.1 of K. Ito in [21, concerning the existence of

i'+2' regularizations, from our proposition 1.

To deduce this, we have only to prove that tue canonical inclusion fromH2 ~

tOp is Hilbert-Schmidt with Hilbert-Schmidt norm ( ) 1/2  This is done

as follows.
We consider as a sequence space consisting of all the sequences a= (a)

i p n nEIN

such that En I lal 2 ( 2 n 1 )P<

-. n n n n nLet for all n cIN, e be the sequence (el,e 2 ,..., e ....) where e. 6' 11 ni"

Then it is easily seen that the sequence (fn) of elements ofp+ wheren
fn = e is an orthonormal basis for'+ 2

IIp+2

Now 2

Ile l (2n+l) p  1

p le n2 (2n+l) p+ 2  (2n+l) 2

p+2

%, . - • o . °' .- .. .- _ • . . - . , ° - . ... . . . . N
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Hence

00 i 00 2I 1 f  112  =  X 1 = 12

n=I  n p n=l (2n+l)2 8

This shows that the canonical inclusion from'~s to'S is Hilbert-Schmidt
2p+ 2  p

with Hilbert-Schmidt norm (--2.

The theorem 1 and the remark following it give immediately as corollary the

existence for all t E R+ of a V-valued random variable (actually a H random+ -q

variable,qE IN, independent of t) which is proved in theorem 4.1.1 of [4].

There, is a countably Hilbert nuclear space.

In the same way, the existence of a S'(]R d) -valued random variable Wt, for

all t R + in theorem 2.4 of [1] will follow provided we prove the continuityJ +

of the bilinear form (s,) f0 <Quip>du on S(IRd) xS(FRd) This follows from

the following proposition.

Proposition 2. Let E,F be Frechet spaces. Let for all u E +, Qu be a continu-

ous linear map from E to F', F' being provided with the topology a(F',F). Let

further, for all (x,y)c Ex F, the function u-<Qx,y> be cadlag. Then for all

t c IR+, the bilinear form

t
(x,y) "+ f<Qux,y>du

0

is continuous on E xF.

Proof. Since E and F are Frechet, to prove that a bilinear form is continu-

ous, sufficient to prove that it is separately continuous. Therefore, we
t

shall prove that for all yE F, the linear mapping x-f0<Qux,y>du is continuous

on E. Analogously, it will follow that for all xE E, the linear map

y- *f<Qxy>du is continuous on F.

........... .....".10. .. . .. .. .. . . .f-21 *- *****-' ... ". "-.,.... ..-. " ... - . ,
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Let yE F be fixed. Let (x n)EI be a sequence of elements of E such that

4x n-0O. Then, for all u, Osu~t, <Q ux n'y>- 0. Hence the convergence of the

integrals fJ Q x y>du to zero will follow from the dominated convergence

theorem, in case we prove that

sup supI <Qux n Y>I <*
nE IN U

Now for all u, O! u! t, the linear map f U from E to IR defined as f u(x)=
y y

< y>is continuous. As for all (x,y), the real-valued function u-<Q uX,y>

is cadlag, sup J<Q ux,y>I< Co. Hence, the family of linear maps (f u)0 U is
uu yOut

*pointwise bounded. As E is Fr~chet, it is barreled and hence by the theorem

* of Banach-Steinhaus, the family (fu is equicontinuous. Hence there
y O! u~t

exists a neighborhood U of (0) such that

-u

sup sup IfU(X)I I .
X u y
XEU OSU~t

That is

sup suip I<(Qx,y>l 5 1.
x U

XEU 05u~t

As x 0, J1 N such that x E U for all n !N. Hence
n

sup sup I<Q x y> < ~ E
n u

n6,V 0! u~t
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